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1. INTRODUCTION

Blast loading phenomena are major contributors to both engineering
and military operational environments. Scientific interest was evident
as early as the nineteenth centuryl)2. The continuing effort to
characterize these phenomenological effects on structures, humans, and
military targets includes the work of Sperrazza3, and O. T. Johnson4,
and Bakerl. As a continuing part of this effort the current authors
propose a model for evaluation of blast-target interaction. The work
of several predecessors at the Ballistic Research Laboratories has been
influential in forming the proposed model. Consequently, the present
report forms a kind of status report on blast vulnerability modeling
within the US Amnyls Ballistic Research Laboratories.

The first concept contributing to the current work is an iso-damage
model using a target, a damage level,3a blast pressure, and a total blast
impulse to characterize blast effects .

The second contributing analysis is the work of Youngdahls in which
it was found that for rigid-plastic structures, subjected to transient
loading, the extent of damage could be characterizedby a two parameter
set, i.e., those of total impulse and a characteristic time. Both are
integrals of load data. This was an important achievement and an indi-
cation that similar methods should yield similar results for the blast
iso-damage problem.

An important third contribution to the authorsi thinking was the
blast damage scaling of O. T. Johnson4. That approach proposed that
level of damage, target and explosive source should combine to define a
unique scaling law for blast damage.

In this work the objectives of the authors were to: (1) minimize
subjectivity of blast/damage relationships; (2) to simplify data
reduction; and (3) to improve accuracy of blast damage analysis. The

‘Wilfred E. Baker, Explosions in Air, Univ, of Texas Press, Austin,
Texas, 1973.
2
F. B. PorzeZ, “IntroductionTo A bhified Theory of Explosions (UTE),”
NOL TR-72-209, 14 September 1972, Unclassified.
.
aJ. Sperrazza, “Dependence of ExterwaZ Blat Damage to the A-25 Air-
craft on Peak Pressure and Impulse,~?Ba~~i~tiC Rese~ch LaboTatoties
Memorandum Report 575, September 1951, AD # 378275.

40. T. Johnson, “A BZust-ZMmage Relationship,” Ballistic Rese~ch
Laboratories Report No. 1389, September 1967, AD # 388909.

I

5C. K. Youngdtzhl,“CorrelationParameters for Eliminating the Effect
of pulse Shape on Dynamic Plastic Deformation,”Journal of Applied
Mechanicsg pp. 744-752, September 1970.
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roles of the prior works cited have been to provide a basic model
(pressure and impulse*), to provide an additional analysis tool (impulse
and a kind of moment integral), and, to provide a means of validation
of the process (the O. T. Johnson scaling law). In presenting this
work the proposed model is first defined and then related to previous
models. Subsequently, it is applied (along with the traditional P-I
model) to”numerical simulations of the blast/dsmage process. The
authors believe that the results justify wide application of the current
mode1.

II. DESCRIPTION OF THE M3DEL

The proposed model is this: .

1. Total impulse per unit area delivered by the blast is defined
by

t=t

i

+

I
~

total
P(t)dt

t.o

(1)

where time starvs at load arrival and stops at the end of positive
pressure phase, (t+) while P(t) is the pressure delivered at the
target.

2. Two numbers, representing idealized static and impulsive
load asymptotes, which cause a specified level of damage, are defined as
the critical pressure (P~r) and critical total impulse (I ).

cr

3. A modified pressure is defined by the integral expression

(2)

2
‘stop

J
(t - tstart)P(t)dt

tstart

where t
start

is thq time that P(t) first exceeds P and t
cr stop

is the time that P(t) drops below Pcr (see Figure 1).

4. The fundamentalblast/damage model is expressed in the form

L
‘Impulse w. thzs report is impulse per unit area unless stated otherwise.

10
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Figure 1. Critical Pressure and Time
Criteria of Proposed Model.
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(P- - per)(Itotal - Icr) = CONSTANT (3)

5. The proposed model may be used when there is no target data
(i.e., when Pcr and Icr are not known) to evaluate relative blast/

damage potential by writing equation (3), with Pcr = Icr = O, as

where DN stands
pressure only.

Discussion

~ DN (4)

for “damage number,1!a &aracteriStiC of the blast

of the model in this report is directed toward those
levels of sophistication which the authors believe justified by the
past and current practices of the military community. There is no
effort to place the presentation in the context found in the physical
science studies of blast phenomenology.

III. THE MODEL AND PRIOR WORK
.

The work of Sperrazza3 may be characterizedby definition of an
iso-damage criteria (see Figure 2)

(Pp - ‘cr)(ltotal - Icr) = CONSTANT (5)

where P
P

is peak pressure and the subscript cr identifies target

charact~risticsof damage. Equations (3) and (5) are of exactly the
same form and only the peak pressure of equation (5) differs from the
modified pressure of equation (3). Equation (5), i.e., the historical
method, carries an implicit assumption that the pressure time history
P(t) has the form

P(t) = pp~(t,x,Y,z, ...) (6)

hence for all conditions of nature @ has little influence in characterizing
failure. That implicit assumption has been very successful in the hands
of experienced blast vulnerability analysts. It has also given rise to
some difficulty in relating test data to ideal theoretical cases and
has made comparison of significantly different types of blast loading
difficult (e.g. pentolite versus Fuel-Air Explosive). It has presented
a source of error in data reduction due to the need for subjective
selection of peak pressure

3
It is in removing this technical problem

that the work of Youngdahl provides guidance.

Youngdahl proposed the use of a two parameter set to characterize
the damage process for a rigid perfectly-plastic target subjected to
transient loading. Like Sperrazza he uses total impulse as one para-
meter. But, instead of peak pressure he uses a characteristictime,

12
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Figure 2. Pressure-Impulse Iso-Damage Model.
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~, defined by

t

J
Sp

2 (t - tst)P(t)dt

A t
F=

St
t

J

Sp

P(t)dt
t
St

(7)

where t is the time at which damage starts and t
St

is the time at
Sp

which damage stops (see Figure 3). Note that equation (7) is a
normalized first moment of the loading. Given that the procedures for
blast damage analysis in the military community already provide for use
of the form of equation (5), it is desirable to convert equation (7) into
a modified pressure rather than a time. This was done by defining

where

t
PSP

(8)

(9)

t
St

The result of substituting equations (7) and (9) into equation (8)
is similar in form to that stated in equation (2) where t~t is

approximated by tstart and ts~ is approximatedby tstop. The
.

consequence of equation (2) (and equation (8)) is that the number pair
I
total

and ~ is obtained without subjective judgement. Caution must

be exercised when attempting to analyze data when the function P(t)
repeatedly changes sign, because equation (1) implies the P-I relation-
ship applies only for pressure pulses during the first positive over-
pressure phase. In general, multiple zero pressure crossings of the
loading function would indicate a repetitive loading or quasi-steady
state forced vibration problem rather than a pulse loading situation
to which the P-I technique should be limited.

IV. DISCUSSION OF THE DAMAGE NUMBER MODEL

Equation (4) is the form in which the proposed model must be used
when P = I = O. This also implies that tstart = O and tstop =

cr cr

14
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t“+’ l“e”’ that all of the positive pressure history is used to compute

P, because the starting and stopping times for the integrals used to
compute T are associated with the damage pressure threshold (Per). We

4
must now refer to the work of 0. T. Johnson to establish the relative
validity of equation (4).

O. T. Johnson’s work relates a normalized nondimensional distance at
which a given level of damage can occur (representedin Figure 4 by Cw,
a factor inversely proportional to range) to the quantity of explosive
used. As is clear from Figure 4, many datum points confirm a scaling
law with a slope in the log-log plot equal to 0.435. In Figure 5 a com-
parison is made between Johnsonfs predictions and predictions based on
the Ballistic Research Laboratory Pentolite data6 using equation (4).
The predictions are based on a reference point for some level of damage
(trianglepoints in Figure 5) having known characteristicsof explosive
charge mass and standoff distance (range). For the four reference points
in Figure 5 predictions were made for the range associated with a charge
mass of 100 kg and slopes (in the log-log plot) for the DN = constant
predictions determined. The mean value of the DN slopes obtained in
Figure 5 is 0.442 which is within one-third of one standard deviation of
that obtained by Johnson. The author’s interpret the agreement between
Johnson’s prediction and the DN prediction to be a form of validation of
equation (4), the least sophisticated form of the proposed model, with
the Ballistic Research Laboratory experimental data base.

The way in which the side-on pressure and reflected pressure bracket
Johnson’s data (see 100 kg in Figure 5) gives an indication of why sub-
jective estimates of damage can be insensitive to details of the damage
mode. Clearly the scaling laws for both side-on and reflected pressure
have very similar forms, with only the initial scale requiring adjustment.

v. STATIC LOADS AND IDEAL IMPULSIVE LOADS

The idealized limit cases in which engineering load analysis are
imbedded are the static load and the pure impulse (P(t) + ~,
duration + O). There is no conceptual difficulty in applying equations
(1) and (2) to static loading, but for purely impulsive loading some
doubt arises. If the positive duration approaches zero, then ~ may not
be defined. A careful examination of the application of equations (1)
and (2) to a single degree of freedom oscillator excited by a Dirac delta
function shows that the value of impulse captured is defined but a
value for T is infinite. This is the expected result and leads to the
conclusion that the method has generality. But in order to ensure

6H. J. &O&lW’1, “Ccmpiled Free-Air Bla~t Data on Bare Spherical
Pentolite,” Ballistic Research Laboratories Report No. 1092,
February 1960, AD # 235278.
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greater applicability, the authors have come to the conclusion that
the use of the model should probably be restricted to cases where ~
can be calculated directly without access to sophisticated mathematics.
As a practical matter, the model is proposed only for
where it is possible to determine a critical pressure
pressure of magnitude Pcr causes damage equal to that

the blast loaded case. In such cases ~ can always be

VI. CALCULATIONS TO TEST THE MODEL

those cases
such that a static
of interest in

determined.

The concept of the model is of value if it achieves any one of
three objectives: (1) that it allows the removal of subjective judgement
from blast-damage analysis and testing; (2) that it improves data re-
duction; or, (3) that it allows data (or analysis) for one class of
pressure time histories to predict the blast-damage results of other
time histories (i.e., that it removes the problem created by @ of
equation (6)).

In order to examine these questions a number of different kinds of
loading histories should be examined. Physical experiments have a
limited instrumentation capability and even greater limitations of
availability. Therefore, it was necessary to augment available test
data with computer experiments (i.e., structural response simulations).

Six types of classical pulse loadings were initially considered for
this kind of computer experiment: rectangular (flat top, instant rise
and fall); quarter cosine (instant rise, cosine fall, no negative phase);
linear decay (instant rise, linear fall to zero overpressure);half sine
wave (no negative phase); ramp (linear rise, instant fall); and, Friedlander.
Figure 6 shows the result of applying equation (2) to the first five
types of loading. This figure can be used to determine the pressure
ratios that are required to achieve the third objective stated earlier
in this section.

Four kinds of computer simulations were used to obtain data on
perfectly instrumented targets with which to study the proposed model:
single and five degree-of-freedommodels; a cylinder model (psuedo-Kirchoff
theory); and, an advanced beam vibration model. Figures 7 and 8 depict
the kinds of systems simulated by the first two models. Figure 9 depicts
the time histories applied to the one and five degree-of-freedom and REPSIL
models. Figure 10 shows the shell model with its spatial distribution of
load having either rectangular or exponentially decaying time dependent
pressure loads. Figures 11 through 14 show the configurations, time
histories and load parameters of the advanced beam analysis.

19
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Figure 10. Frontal Cosine Loading of Fixed-Ended Cylinder.
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Forthasinglc triangle case: use f2(t) only.

For the exponential cose: use f,(t) only

with n=a=l.

For the double triangle case : 0=0, n:l
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Figure 13. KADBOP Blast Response Code Forcing Functions.
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The analysis of the single degree-of-freedomsystem and the five
degree-of-freedom system were conducted using a finite difference com-
puter code7 developed by Southwest Research Institute (SWRI) under
contract to BRL. In that program the plate (or beam case utilized)
equations of motion for flexure are solved under assumed moment-
curvature relations. It was assumed that a bilinear moment-curvature
relation with hysteretic recovery could approximate the response of a
representative system made of aluminum alloy. In Figure 8, Dx is the

elastic rigidity, Ix is the plastic flexural rigidity and Mx is the

bending moment at which the transition occurs.

The schematic form of the first two systems investigated are those
shown in Figure 7 where K represents the spring bending characteristics,
W represents the mass of each element and Pt represents the blast

loading function to be applied to the system. Table I lists the
parameters used to analyze those systems.

The output of the computer program was the maximum bending moment
obtained in each spring element. Beam curvature is known and, assuming
a beam thickness, the resulting maximum strain can be determined after
the system is allowed to oscillate through enough cycles to be reasonably
assured that the maximum strains were achieved. For the one degree-of-
freedom system this occurred on the first cycle of response. However,
for the five degree-of-freedomsystem many cycles were allowed to proceed
before stopping.

These two computational experiments were chosen as a means of
investigating a wide range of loading characteristicsas shown in
Figure 9.

The cylindrical shell computation was included in order to take
advantage of the highly developed REPSIL8sg computer code. The specific
case studied is a fixed end 6061-T6 circular cylindrical shell of 768
elements having the properties listed in Table I.

‘W. E. Baker, S. Silverman, P. A. Cox, Jr., and D. Young, “Structural
Response of Helicopters to Muzzle and Breech Blast,” Vol II, Final
Technical Report SWRI 02-2029, Contz+zctNo. DAAD 05-67-C-0201 (BRL)
dated March 1962.
8N. J. Huffington, Jr., “Large Deflection Elastoplaetic Response
of shell Structures,” Bullistic Research Laboratories Report 1515,
November 1970, AD # 717005.
9
1. J. Huffington, Jr., “An Analytical Study of Explosive Loading
Techniques for Simulation of Impulsive Loading to Structures at
Lethality Levels,” Ballistic Research Laboratories Report No. 1621,
November 1972, AD # 907436-L.
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The pressure histories applied to the shell act over the top
half cylinder having peak pressure on the crown line and a cosine
distribution around to the half cylinder line as shown in Figure 10.
The time histories have the general form

P =’ Cose P. (1 - t/t+)exp(-13t/t+) ,

where 6 is zero at the crown line of the cylinder and ? = 2.0.

The final system considered in the model validation was a
contractor effort10 which was generated under a separate set of
requirements. It was included because it provides an example of a
relatively heavy beam structure. The relatively stiff structure
(clamped at both ends) filled out the spectrum of targets even though
the loading was very limited. The degree of limitation on the loading
is made clear by examination of Figure 14. The loads are essentially
identical over 60 percent of target loading regime.

The contractor calculationswere made using their KADBOPIO code.
The KADBOP beam program employs a finite element approach wherein the
beam is represented by a series of discrete masses interconnectedby
straight weightless bars. Fifteen equally spaced mass points were used
to simulate the beam length and the beam was assumed to be uniformly
loaded.

To use the Kaman data in the correlated concept presented here,
it was necessary to re-compute ~. To do this the three curves of
Figure 14 were determined for the loading functions used by the
contractor to determine non-dimensional forms of the parameters,
PP
cr’ peak’

and P.

VII. CALCULATED TEST RESULTS

To test the results of the model we have: created numerical
simulation of physical experiments; applied the model to the results;
applied the conventional techniques (peak pressure versus total impulse)
to the results; and, examined the relative dispersion of the two methods.
Visual (ioe., subjective) judgements are made as to the relative merits
of the two methods. A perfect method would produce iso-damage curves
that are independent of loading pulse shape. Neither system is perfect,
therefore, closeness (minimum distance between) of curves for a given
iso-damage criterion with different time histories is our standard
of how good a given method is. Only relative measures of goodness
are possible in this way.

lox ~ ~etimope

“An Interim Technical Report on Phase I of the BRL. .
Pressure _lmpu?seBlast Program,“ 30 September 1974, Contract
DAA05-74-C-0742,Kaman Avidyne.
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It is difficult to give an objective measure for the value of an
engineering practice, but the authors believe that the ability to cause
all fixed damage iso-damage curves to fall within experimental scatter
of one another would meet the third objective stated in Section VI.

In general, an iso-damage criteria is selected to satisfy a “constant
level-of-damagerequirement.” This criteria could have been: maximum
strain anywhere in the target, maximum deflection of the target, maximum
deflection at a specified location on the target, etc. However, for the
purposes of the investigation the iso-damage criteria was arbitrarily
selected to be the maximum percent strain on the surface of the target as
calculated at the discrete grid locations.

Data about the results is given here in two forms: Tables II through
V and, Figures 15 through 24. Tabular data is included because the
present evaluation of the proposed model is still subjective. Other
investigators may choose to use some traditional objective method
of comparing the data for both P-I and ~-I iso-damage methodology. The
present authors have sought the assistance of experts within the Ballistic
Research Laboratories* to assess the relative merits of the two methods.
No technique was immediately available; therefore, the subjective
evaluation will be published at this time.

The subjective evaluation used by the authors was based on the
question: How well do the iso-damage curves for one loading history
(d of equation (6)) predict other loadings? Specifically: How well
relatively, do the rectangular pulse iso-damage curves (one degree-of-
freedom case) in Figures 15 and 16 predict iso-damage data for a linear
decay pulse or data for a sawtooth pulse or other type loadings?
Similar questions are applied to the five degree-of-freedomsimulation
data of Figures 17 and 18. For REPSIL the question is how well does
rectangular pulse data predict exponential decay data (Figures 19 and
20)? For the Kaman Avidyne beam data we ask the reader to pose his own
comparison (Figures 21 through 24). In these last four figures the
authors believe that the case is as strongly in favor of the ~-I method
as in the preceding cases. However, it has been suggested that
merely displaying a curve fit to a part of the data biases the observers’
opinion. The Kaman Avidyne data was chosen to be left without a reference
curve because it has the least variation in loading function (see
Figures 13 and 14) and therefore, subjective judgement of the results
was most likely to be biased by introduction of visual reference.

It is the judgement of the authors that visual inspection of
~igures 15 through 24 clearly supports the contention that the use of
P and I is superior to the use of P and I. The weakest supportpeak

‘Private ccwnun”zcatwns: Dr. Malcolm Taylor
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Table V. Data from Kaman Avidyne Beam Response Calculations

Strain = 3.0%
Loading Average* Peak Total
Function Pressure Pressure

=%&*%%
3.44 3,99 3.99
2.79 3.06 6.13

Triangular 2.58 2.75 8.26
(Linear 2.48 2.61 10.46
Decay) 2.41 2,52 12.59

2,35 2,42 18.14
2.32 2.37 23.72
2.28 2.32 34.89
2.28 2.30 46.07
2,26 2.28 79.59

Strain = 15.0%
Average** Peak Total
Pressure Pressure Imnulse

W’#-p2H? *
11.01
8.61
8.09
7.87
7.74
7.58
7.49
7.43
7.37
7.32

12.71
9.26
8.50
8.15
7.97
7.73
7.62
7,51
7.45
7.37

12,71
18,52
25,48
32,62
39,83
57.98
76.21
112.6
149.0
258.1

2,24 2,26 113,20 7,32 7,34. . . .367.3
6.28 8.60 3.17 23.37 32. S9 11.99
4.05

Expo- 3.16
nential 2.86
Decay 2.68

2.59
2.47
2.40
2.34
2.31
2.27

5.07
3.67
3.21
2.94
2.80
2.61
2.50
2.41
2.37
2.30

3.72
5.41
7.08
8.67

10.30
14.39
18,37
26.57
34.77
59,39

13.29
9.86
8.82
8.39
8*16
7.83
7.69
7,55
7.47
7.38

16.61
11,26

9,66
9.00
8.62
8.14
7.92
7.70
7,59
7.46

12,22
16.57
21.33
26,48
31.72
44.92
S8.26
85.03
111.8
191.9

2.26 2,28 84.00 7.34 7.39 271,9
6.40 10.66 3.20 23.00 39.45 11.83
4.68 6.38 3.83 15.34 20.90 12.54

Triangular- 3.87 4.63 5.56 12.40 14,74 17.69
Triangular 3.39 3,95 7.10 10.71 12.36 22.24
(Bilinear 3.10 3.52 8.44 9.61 10.73 25.75
Decay) 2.92 3.23 9.75 8.96 9.79 29.37

2,66 2.88 12.97 8.30 8,82 39.69
2.54 2.70 16.19 7.97 8*35 50.08
2,43 2,53 22.81 7.74 7.97 71.79
2.39 2,44 31.39 7.61 7*79 93.52
2,31 2.35 49.39 7.46 7.57 159,0
2.28 2,32 69.52 7.39 7.48 224,4

* Pcr = 2.21 bar
** p~r = 7.24 bar
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for this position comes from the contractor data. This is a consequence
of the strong similarity of the pulse shapes used (recall that all three
are approximations to the same time history). No case shows the
traditional method to be superior to the model proposed here.

VIII. SHOCK PULSE EFFECTIVENESS

In making comparisons of the pulses parameterized in Figures 6 and
14 one may ask: How are the traditional model

‘Ppeak - pcrl(Itotal - Icrl = Kt

and the proposed model

(F - ‘cr)(ltotal - Icr) = K

related? Looking at Figure 6 one sees that ~/P is almost a linear
peak

function of Per/P Making use of this characteristictopeak”
approximateF/P bypeak

F
t’

— =
P

K1+(l-Kl)#-

peak peak

we find that

F=
‘lppeak + (1 - K )P

1 cr

which may be substituted into the new iso-damage model with the result

(KlppeA + pcr - Klpcr - pcr)(Itotal - Icr) = K

This simplifies to give

‘Ppeak - ‘cr)(ltotal - lcr)

Thus in the linear approximation

K
‘q”

to ~/Pped we find that the Pcr/PDeA = O

intercept, Kl,
.

is the transformation fa&or between the traditional

and new models, i.e., K
t = K/Kl). In other words
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K1 * [(P - per)(Itotal - Icrl] = (~- pcrl(Itotal - Icr) = Kpeak

Thus, we see that the proposed model is, in effect, a means of modifying
the material contained in the traditional P-I maps. In general, it can
be said that the parameter, K1 is a quantitative measure of the

effectiveness of a pulse as compared to a rectangular pulse having the
same total impulse in causing damage irrespective of the target
characteristics.

IX. USE OF ‘11-lEPROPOSED I@DEL IN DATA REDUCTION

So far, the discussion has been limited to the theoretical advan-
tages of the present model. Another aspect which is of equal if not
greater importance is that the proposed model is a practical tool for
the reduction of test data. In short, the discussion so far has
neglected objectives one and two of Section VI.

Figure 25 shows what we can expect to gather in the way of data
from blast test instrumentation. As one can see, the loading is not
classical. In applying methods that depend on peak pressures, total
impulse and similarity to classical loading, the data reduction relies
heavily on subjective judgement. With the proposed model, the results
are integrals of time histories and as such are not dependent on sub-
jective evaluation of empirical records. It will be possible to use
the ~-Itotal number pair or its derivative characterizationsof the

target response to a given attack in either theoretical or experimental
studies.

Use of this model for data analysis should incur no additional cost
because most agencies recording tests data now have the pressure-time
histories digitized for computer plotting and impulse determination.
Figure 25 provides a case in point. Data for two of five side-on pres-
sure measurements taken on one Fuel Air Explosive (FAE) test are shown.
The FAE device was initiated near the ground and identified as having a
nominal charge weight of 33.6 kg.

In Figure 26 we see the damage number (DN) versus radius for
this event. Also included on the figure are the damage numbers versus
radius for bare spherical pentolite charges detonated in close proximity
to the ground and assumed to have an effective charge weight of 1.8
times actual. The conclusion that we draw from this comparison is
that for side-on pressure loading cases outside the cloud and near
the ground, this FAE device is approximately 2.1 times as effective as
Pentolite. This indicates that relatively soft targets can have damage
numbers up to a limiting value as indicated by the knee in the curve.
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Another example of the use of this model in interpreting test
data is shown in Figure 27. This figure shows localized loading time
histories for two helicopters exposed to a large-scalehigh-explosive
detonation.ll The difference between the two curves results from one
helicopter being revetted (lower curve) and the other one being un-
revetted. One can see that the determination of the damaging potential
of the loading functions (which, incidentally, for this case is a
measure of the ability of the revetment to reduce damage) is enhanced
as judged by use of the damage number criterion. Damage numbers for
these two loading functions are included on the plots. It can be seen
that the damage number for the non-revetted helicopter is slightly
larger than that for the revetted helicopter. The ratios of the
damage numbers (HELO 2/HELO 3) was found to be 1.14.

If one were to use the previous concepts for evaluating these same
data, one would get a peak pressure ratio of 1.19, a total impulse
ratio of 1.05 and a peak pressure-impulse product ratio of 1.26. These
numbers indicate that the results would depend upon the ratio or ratios
considered important. It is interesting to note that the average of
these three ratios is 1.16, which is close to the ratio obtained using
our model. It thus appears that our model can be of significant help
in evaluating test results as well as in quantifying test data.

x. CONCLUSIONS

A conclusion which has been a defacto part of the blast community
is that P-I methods are not applicable in the pure impulse and static”
load regions of dynamic structural response analysis. This conclusion
has been brought into sharp focus by comparison of the presently pro-
posed P-I method with its traditional and less versatile predecessor.

The proposed method provides an explanation for interesting previous
methods having differing degrees-of-sophistication. These logical
connections relate the one parameter method of O. T. Johnson to the
two parameter P-I method. In turn, the P-I method is related to experi-
ment and theory in structural blast damage.

The currently proposed method provides a convenient standard method
of blast data reduction which may be applied to future experimental
work and to correlate future data to that existing today.

The proposed method provides a means of relating damage from explo-
sives having known characteristicsto that caused by explosives having
significantly different blast characteristics.

Finally, the present research has lead to an ongoing effort to
apply statistical methods to validation of P-I iso-damage methodology.

“R. N. Schumacher, ‘Blast Response of Helicopters Parked in Revetments
(EventMixed (brnpany),”BaZZi8tic Research Laboratories Memorandum
Report No. 2516, August 1975, AD # B-006642-L.
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